Does it Make Sense to Apply the Estimand Framework to Clinical Pharmacology Trials?

Sue McKendrick and Helle Lynggaard, on behalf of the EIWG sub-team on Estimands in Clinical Pharmacology and Early Phase Trials

12 June 2023

Estimands in Clinical Pharmacology Trials

Introductions and Disclaimer

Presenter	Company	Job title
Helle Lynggaard is a key driver in implementing estimands in Novo Nordisk studies. Helle is an active member of many EIWG sub-teams including Estimands in Clinical Pharmacology and Early Phase Trials	novo nordisk [®]	Principal Statistician
Sue McKendrick leads the cross-functional Estimand Working Group at the PPD clinical research business (part of Thermo Fisher Scientific) and currently leads the EIWG sub-team for Estimands in Clinical Pharmacology and Early Phase Trials. She is also a member of the EIWG training team.	Part of Thermo Fisher Scientific	Statistical Science Director

Disclaimer:

The views expressed by the presenters are not necessarily the views and practices of their employers, or of any of the EIWG member companies

Acknowledging Sponsors and Two Teams (Overlapping Membership)

Bioequivalence Publication Team

"How Estimands can be applied to Bioequivalence and Other Clinical Pharmacology Trials" (in preparation)

- Helle Lynggaard, Novo Nordisk
- Sue McKendrick, PPD
- Mark Baird, PPD
- Essam Kerwash, MHRA
- Vivian Lanius, Bayer
- Florian Lasch, EMA
- David Wright, AstraZeneca

Reviewers

Estimands in Clinical Pharmacology and Early Phase EIWG Sub-team

CR

Background: Examples of Types of Clinical Pharmacology Trials

Exploratory

- Single-ascending dose (SAD)
- Multiple-ascending dose (MAD)

Lots of regulatory BE guidance but estimands not stated!

Confirmatory

- Bioequivalence (BE)
- Drug-drug interaction
- Food effect
- Special populations
 - Renal impaired patients
 - Hepatic impaired patients
 - Pregnant and lactating women
- Concentration QTc

New FDA Draft Guidance Requires Estimands

Statistical Approaches to Establishing Bioequivalence Guidance for Industry

DRAFT GUIDANCE

The ICH (Internal Council for Harmonization) E9(R1) Addendum introduces the concept of an 324 325 estimand, which is a precise description of the treatment effect reflecting the clinical question posed by a particular study objective.²¹ The trial protocol of a BE study should include the 326 following components of an estimand: (1) the treatment of interest and alternative treatment(s) to 327 which comparison will be made: e.g., test drug compared with reference drug; (2) the analysis 328 329 population for BE assessment; (3) the variable (or endpoint) to be measured for each subject 330 (e.g., AUC or C_{max}); (4) the specification of how to account for intercurrent events in assessing the scientific question of interest (for example, in a comparative clinical endpoint BE study with 331 a binary endpoint, subjects who discontinue study treatment early due to lack of treatment effect 332 should be included as treatment failures); and (5) the population-level summary for the variable 333 334 to compare between treatment conditions, e.g., the geometric mean ratio of the test to reference 335 drug in a PK BE study.

Issued December 2022

https://www.fda.gov/media/163638/download

Bioequivalence (BE) protocols "should include the following components of an estimand"

The Thinking Process of the Estimand Framework

ICH E9(R1) training slides: E9(R1) Training Material - PDF_0.pdf (https://database.ich.org)

Don't Skip like the Kangaroo, Glide like an Eagle!

The (Estimand) Eagle has sight of the (clinical) landscape and eye for detail Glides purposefully to its target

Applying Steps of the Thinking Process to a Bioequivalence Case Study

Adv Ther (2017) 34:2071-2082 DOI 10.1007/s12325-017-0594-8

Our "Eagle Trial" Case Study takes this clinical setting

ORIGINAL RESEARCH

A Pharmacokinetic Bioequivalence Study Comparing Pirfenidone Tablet and Capsule Dosage Forms in Healthy Adult Volunteers

Lin Pan · Paula Belloni · Han Ting Ding · Jianshuang Wang ·

Christopher M. Rubino · Wendy S. Putnam

Received: June 12, 2017 / Published online: August 14, 2017 © The Authors 2017. This article is an open access publication Study designed and published 2017, pre-ICH E9(R1)

Step 1. Therapeutic Setting and Intent of Treatment Determining a Trial Objective

Pirfenidone: an oral anti-fibrotic agent used to treat serious condition of idiopathic pulmonary fibrosis with side effects of nausea, vomiting and rash (poor tolerability, worse when fasted)

Label: advises dosing with food to reduce risk of nausea [only ~60% tolerate 801 mg tid]

Intent of new formulation: convenience of 1 tablet rather than 3 capsules three times per day (similar tolerability and PK expected)

Objective: to evaluate the rate and extent of absorption of pirfenidone of a new high dose tablet formulation of pirfenidone with goal to establish equivalence to three capsules in the fed state

Typical endpoints: AUC_{0- ∞} and C_{max} (single dose)

tid ter in die (three times daily); AUC_{0-∞} = area under the plasma pirfenidone concentration curve extrapolated to infinity; Cmax = maximum concentration

Study Objective Relates to a Single dose in Healthy Individuals **Transportability** to Multiple Dosing at Steady State in Patients?

EMA guidance: "In order to reduce variability not related to differences between products, the studies should normally be performed in healthy volunteers"

Step 2 Identify Intercurrent events

Step 3 Discuss Strategies for Intercurrent Events

Step 4. Construct the estimand

Estimand attributes to Evaluate Equivalence of New High Dose Tablet Formulation

Population-Level Summary

Variable

Treatment Conditions

Target Population

رهم ا

Strategies for Intercurrent Events What is the geometric mean ratio (test/reference) of the

 $AUC_{0-\infty}$ (C_{max}) of plasma pirfenidone concentration-time profile

comparing **Test** (1 x 801 mg film-coated tablet) to **Reference** (3 x 267 mg capsules) both as single oral doses administered with food as though dosed correctly, without intake of interacting substances or unrelated intercurrent illness affecting absorption or elimination ^[1]

in healthy adults able to tolerate 801 mg pirfenidone^[2]

[1] Hypothetical strategy[2] Principal stratum

Step 5. Align Choices on Trial Design, Data Collection and Method of Estimation

Trial Design

- 2x2 Cross-over in fed state with sufficient washout
- Good trial conduct: controlled conditions + minimize intercurrent events

Step 5. continued **Defining Analysis Sets (Participant and Data Point Levels)**

Step 5. continued **Method of Estimation**

Linear mixed model on log scale with sequence, treatment, period as fixed effects and subject as random effect

Conclude bioequivalent if 90% confidence interval for the geometric mean ratio lies within (0.80, 1.25) BE limits

for both C_{max} and $AUC_{0-\infty}$

Conclusions

Glide like an eagle!

 Regulators place emphasis of ICH E9(R1) guidance on questions which impact labels (includes bioequivalence, drug-drug interactions, food effect...)

- The thinking process adds value to all trials and may impact the proposed design
- Justify transportability: healthy to patient population

Identify what you want to find out before how

References

- ICH E9(R1) Addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials (Effective in EMA 30 July 2020)
- ICH E9(R1) training slides: E9(R1) Training Material PDF_0.pdf (https://database.ich.org) (accessed 1 November 2022)
- FDA draft guidance: Statistical Approaches to Establishing Bioequivalence (December 2022), https://www.fda.gov/media/163638/download
- Lin Pan, Paula Belloni, Han Ting Ding, Jianshuang Wang, Christopher M. Rubino, Wendy S. Putnam. et al. A Pharmacokinetic Bioequivalence Study Comparing Pirfenidone Tablet and Capsule Dosage Forms in Healthy Adult Volunteers. Adv Ther (2017) 34(9):2071-2082, doi: 10.1007/s12325-017-0594-8

